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We explore the possibility to break time-reversal invariance at the junction of quantum wires. The universal
features in the bulk of the wires are described by the anyon Luttinger liquid. A simple necessary and sufficient
condition for the breaking of time-reversal invariance is formulated in terms of the scattering matrix at the
junction. The phase diagram of a junction with generic number of wires is investigated in this framework. We
give an explicit classification of those critical points, which can be reached by bosonization and study the

interplay between their stability and symmetry content.
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I. INTRODUCTION

Time-reversal symmetry is a fascinating subject. In this
paper we investigate the behavior of junctions of quantum
wires under time-reversal transformations. Quantum wire
networks with junctions, which attract recently much
attention,'=?° are essentially one-dimensional systems whose
transport properties are affected by quantum effects. The uni-
versal features in the bulk are captured by the Luttinger lig-
uid theory.® The junctions represent in this context a kind of
quantum impurities (defects), where both reflection and
transmission can take place. This fact gives origin of a com-
plicated phase diagram, which has not been yet fully under-
stood for general boundary conditions at the junctions, for-
mulated in terms of the basic fermion fields. Focusing on the
case of one junction, we discovered'? in the framework of
bosonization a large class of boundary conditions, which pre-
serve the exact solvability of the Tomonaga-Luttinger (TL)
model describing the Luttinger liquid in the bulk. At critical-
ity these boundary conditions simply express the splitting of
the electric current in the junction and are therefore quadratic
in the fermion fields. We classified and studied in this setting
all critical points which respect time-reversal invariance. In
this paper we extend our framework in order to cover also
that part of the phase diagram, where the time-reversal sym-
metry is broken. Recalling that the Tomonaga-Luttinger dy-
namics preserves time-reversal invariance, the breaking can
take place only at the junctions. In principle such kind of
junctions can be realized®!*!3?* by means of an external
magnetic field and are therefore of practical interest.

The previous theoretical investigations of the stability of
the critical points and their behavior under time reversal have
been mostly focused on junctions with n=3,4 wires. Apply-
ing the framework developed in Refs. 19-21, we face below
these problems for generic n.

The paper is organized as follows. In the next section we
define the bulk dynamics and boundary conditions at the
junction. Using bosonization, we recall?! in Sec. III the exact
(anyon) solution of the model. In Sec. IV we derive the
current-current correlation function and extract the necessary

1098-0121/2009/80(24)/245441(10)

245441-1

PACS number(s): 73.63.Nm, 71.10.Pm, 73.23.—b

and sufficient condition for the breaking of time reversal. We
discuss here also the Kirchhoff’s rules relative to the U(1)

®U(1) symmetry of the model. In Sec. V we consider the
conductance and describe the impact of time-reversal break-
ing on it. The classification and parametrization of the criti-
cal points is done in Sec. VI. In Sec. VII we study the phase
diagram, concentrating mainly on the symmetry content and
stability of the fixed points. Section VIII is devoted to our
conclusions. Some technical details are collected in the ap-
pendixes.

II. BULK DYNAMICS, SYMMETRIES, AND
BOUNDARY CONDITIONS

The quantum wire junction is modeled by a star graph I
of the form shown in Fig. 1. The edges E; are half lines and
each point P in the bulk of I' is uniquely determined by its
coordinates (x,i), where x>0 is the distance to the vertex V
and i=1,...,n labels the edge. I'\V represents the bulk of the
graph. The bulk dynamics is governed by the TL Lagrangian
density

L= “//T(at_ vFax) l,b] + “//;(al + vFﬁx) l/’Z
- & (I + Yon)” — (i — i)’ (1)

Here, {¢,(t,x,i): a=1,2} are complex fields, v is the Fermi

FIG. 1. A star graph I with n edges modeling the junction of
quantum wires.
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velocity, and g, € R are the coupling constants.!

The bulk theory has an obvious U(1) ® U(1) symmetry. In
fact, the Lagrangian density (1) is left invariant by the two
independent phase transformations (s,5 e R),

Vo e Yo €, (2)
Yo Yy Yy — &Y, (3)
implying the current conservation laws
p=(t,x,0) —vpdj(t,x,0) =0, (4)
where
p=(t,x,0) = (Y14 = i) (1,x,1) (5)

are the charge densities and

jt(t’xai)=pi(taxai) (6)

are relative currents. We adopt below also the chiral combi-
nations

et i) = 5(Lj_+ L) (tx,0), (7)

jL(t’x’ l) = %(g—J— - §+j+)(t’x’ 1)7 (8)

where the real parameters (., determined later on, are such
that j; and ji represent the particle excitations moving to-
ward and away of the vertex, respectively. Interpreting the
vertex as a defect, characterized by some scattering matrix,
the currents j; and ji describe therefore the incoming and
outgoing flows.

The bulk theory is invariant also under the time-reversal
operation,

Tlpl(t,xai)f = 1102(_ I,X,i), (9)

Tin(t,x,0)T" = (- t,x,i), (10)

where T is an antiunitary operator. As already mentioned,
our main goal below will be to investigate the impact of the
vertex V and the related boundary conditions on time rever-
sal.

The TL model (1) is exactly solvable on the line R, but
much care is needed on the graph I', where some boundary
conditions must be imposed at the vertex V. Keeping in mind
that the quartic bulk interactions in Eq. (1) can be solved
exactly via bosonization,> it will be obviously convenient to
formulate the boundary conditions directly in bosonic terms.
In this spirit and according our previous comments on the
chiral currents, it is quite natural to require that at a critical
point

Ju(t.0.0) = 2 Syjr(t,0.k),  VreR. (11)
k=1

For n=2 this boundary condition has been first proposed and
explored in Ref. 2. Because of scale invariance at criticality,
S is a constant (momentum independent) unitary scattering
matrix,
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Ss*=1. (12)

Since the chiral currents (7) and (8) are Hermitian fields, one
requires also that S has real entries,

S=8. (13)

Equations (12) and (13) imply that S is any element of the
orthogonal group O(n). It has been shown in Refs. 19-21
that, in spite of the fact that the boundary condition (11) is
quadratic in the fields ¢, it preserves the exact solvability of
the TL model on the graph I'. It is worth mentioning that this
is not the case with the linear boundary conditions in i,
which might look at first sight simpler.

Applying the time-reversal operations (9) and (10) to Eq.
(11) one infers that

Jju(t,0,i) = 2 Sijr(1,0,k),  VieR, (14)
k=1

where the apex ¢ stands for transposition. Comparing Eqs.
(11) and (14) we conclude that symmetric scattering matrices

S=¢ (15)

define boundary conditions which respect the time-reversal
invariance. This is the case we investigated previously in
Refs. 19-21. On the other hand, for

§# (16)

one expects breaking of time reversal. We demonstrate in
Sec. IV that this is indeed the case, using the explicit form of
the current-current correlation function. We conclude at this
point the concise description of the bulk dynamics, symme-
tries, and boundary conditions of our model and briefly de-
scribe in the next section the solution.

III. SOLUTION OF THE TL MODEL ON A STAR GRAPH

We look below for the solution ¢, of the TL model which
satisfies the boundary condition (11) and obeys the anyon
exchange relations

Yot x1,0) Pt x0,0) = € VIR (1) D) (1,x,0).
(17)

Here, &(x) is the sign function, x;,=x;—x,, and k € R is the
so called statistical parameter, which equals an even and an
odd integer for bosons and fermions, respectively. Other val-
ues of « give rise to Abelian anyon statistics “interpolating”
between bosons and fermions.

The solution on I" can be expressed in terms of the chiral
scalar fields {¢; /(§):Z=L,R;i=1,...,n}, which are not in-
dependent as on the line R, but respect the constraints

n

@i,L(f) = E Sij@j,R(f), (18)

J=1

keeping track of the boundary conditions (11). The explicit
construction and a summary of the main features of ¢, ; are
given in Appendix A. A key point is the nontrivial one-body
scattering matrix*?
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S(k) = 0(- k)S + (k)S', (19)

where 6 is the Heaviside step function. We stress that the
peculiar k dependence of S(k) respects scale invariance.

Let us summarize now the basic features of the solution of
the TL model with boundary conditions (11). We do this
essentially for two reasons. First of all the field ¢ associated
with the S matrix (19) behaves quite differently (see Appen-
dix A) from its counterpart in Ref. 21. Second, because we
would like to keep the present paper self-contained.

Following the standard bosonization procedure,*’ we set

‘//1 (t,x, l) — Zi;eiG:T[qui,R(Ut_x)"'T‘pi,L(vH'x)]: , (20)

lﬂz(l‘,x,l‘) — Zi:ei\““7_7[TQDi,R(U’_X)"'O"PiA,L(UHX)]: , (21)

where :---: denotes the normal product relative to the cre-
ation and annihilation operators of the fields ¢; 7, namely, the
generators of the algebra (A2). The explicit form of the nor-
malization constants z; (including the Klein factors) is re-
ported in Appendix A as well. Finally, o, 7, and v are three
real parameters to be determined in terms of coupling con-
stants g+ and the statistical parameter «. For this purpose we
can assume without loss of generality that

c=0, o# * 1, (22)
and introduce for convenience the variables
{s=T* 0. (23)
Plugging Egs. (20) and (21) in Eq. (17) one gets
Ll =k (24)

Moreover, using standard short-distance expansion for the
charge densities, one obtains

pa(t5,0) = ——— (90 R) (01— 2) * (9g:) (01 + )],
2Tl

(25)

with the normalization being fixed?® by the

U(1)® U(1)-Ward identities. Inserting Egs. (20), (21), and
(25) in the quantum equations of motion,

1[(9t + (_ l)aUFax]l//a(t’x’ l)
=2[g.:ip(t,x,0) (2, x,0) — (= 1)%_:p_(t,x,0) th,:(2,x,0) ],

(26)
one finds
) 2
vl =vpk+ —g,, (27)
T
) 2
vli=vpk+—g_. (28)
T

Equations (24), (27), and (28) provide a system for determin-
ing v and ¢ (equivalently o and 7) in terms of vy and g-.
The solution is

KU+ 2g, \ T2
2= |K|(—F g*) , (29)
TKUp+2g_
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\s"( Trvp+2g_)(TrUE+2g,)
v=

, (30)
7|«
where the positive roots are taken in the right-hand side.
Relations (29) and (30) represent the anyonic
generalization?! of the well-known result for canonical fer-
mions (k=1) in the TL model.3> The conditions
2g.>—mkuy ensure that o, 7, and v are real and finite.

Finally, in the bosonic variables U(1) ® U(1) currents j.
take the form

Jeltx,) = ————[(9@,R) Wt~ x) T (dg) (01 +x)]
2NV -

(31)
and satisfy Eq. (4) by construction. Using Egs. (18) and (31)

one immediately verifies that the above solution of the TL
model on I' indeed satisfies the boundary condition (11).

IV. SYMMETRY CONTENT
A. Time reversal

The simplest way to investigate the behavior of the above
solution under time reversal is to derive the two-point corre-
lation functions of the currents j.., defined by Eq. (31). Using
Egs. (A10)—(A12) one obtains

Ualtr,x1,00)j (2, %0,12))
2

v ) X
= m[ﬁi,iﬂ? (vt =xp0) + 6[”.2’_]) (vt1s +X12)

-5 'Dz(vflz"'flz)—Sﬁlizpz(vﬁz—flzﬂ (32)

hi
where

i

D(§)=- (33)

E+ie’

and t12=t1 - tz, X12=X1—Xp, and 212=)C1 +X5.
Let us assume for a moment that time reversal is an exact

symmetry or, equivalently, that 7 leaves invariant the

vacuum state (). Then, using the antiunitarity of 7, one finds

that

Galt1,x1,11) 71 (12, %0, 15)) = (o (= 11,21, 11) o (= 12,20, 10))
(34)

holds. Combining Eq. (32) with Eq. (34) one deduces that
TO=0S=5, (35)

showing that the TL model on I' is invariant under time
reversal if and only if S is symmetric. Otherwise, time rever-
sal is broken, i.e.,

TQO+#QOQeS+5, (36)

which confirms the conjecture made after Eq. (16) in Sec. II.
In particular, time reversal is always exact for n=1. For this
reason we focus in what follows on the case n=2.
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B. U(1)® U(1) symmetry
Continuous symmetries on graphs are governed'*?° by the

associated Kirchhoff’s rules. Concerning the U@ U(1)
symmetry, using the current conservation (4), one gets for
the corresponding charges

[’

dx p(t,x,i) = vp 2 jo(5,0,0).  (37)
0 i=1

n
3Q+ = ‘912
i=1

Inserting here Eq. (31) and taking into account the boundary
conditions (18), one finds

n

90-=—2— (8,7 500, )0D).  (38)

2Nl =1

From this result we infer that!®

n

Q. — conserved < >, Sij=*1,
i=1

Viji=1,...,n.

(39)

Recalling that Q, is the electric charge and Q_ is the helicity
of the Luttinger excitations, we see that only one of these
quantum numbers is preserved for a generic junction.?*

It is worth mentioning that for junctions with n=2 wires
the conservation of Q, or Q_ protects the time-reversal sym-
metry. Thus, junctions of three wires (7 junctions and Y
junctions) represent the minimal setting for breaking time
reversal in systems preserving the electric charge Q. or the
helicity Q_ of the Luttinger liquid. Notice also that the con-
servation of Q, excludes the Dirichlet fixed point S=-I.

V. CONDUCTANCE

A simple physical observable, which is sensitive to the
breaking of time reversal, is the conductance tensor G; j of the
Luttinger liquid on I'. In order to compute this tensor, one
couples the theory to an external potential A (¢,i) by means
of the substitution

A= dc+1A(8,0) (40)

in Eq. (1). The resulting Hamiltonian is time-dependent and
the conductance is the coefficient in the linear term of the
expansion of the expectation value (J(,0,i)) 4, in terms of
A,. For deriving G one can apply therefore linear-response
theory, which leads to!%?

N v _q
C=gm -9, (41)

TUFRG,

Using condition (39), which ensures the conservation of the
electric charge Q, and S e O(n), one gets the Kirchhoff’s
rule for the conductance tensor,

EGijzszi:()v ijl,...,n. (42)
i=1 i=1

If a voltage V; is applied to the edge E;, the current /; flowing
in Ej is
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n

Combining Eq. (16) with Eq. (41) we conclude that the
breaking of time reversal (16) implies the asymmetry

G#G, (44)

a feature which has been previously observed in Refs. 7, 10,
and 22. Property (44) provides an attractive experimental
signature. Indeed, consider, for instance, the following two
configurations with i #j. Apply first the voltage V to the
edge E;, setting to zero the voltages in all other edges and
measure the current ;=G ;;V. Repeat the same operation, ap-
plying now V to the edge E; and measuring the current

1;=G;V. If I;/I;# 1, the system breaks time reversal.

VI. CRITICAL POINTS
A. Classification

As already mentioned, S € O(n). There exists therefore an
orthogonal matrix O, such that

r

0S80 = 4 : (45)

Here, r; are g rotation matrices

(cos 6; —sin 6,

sin 6, ), 0, € [- m, ). (46)

cos 6;

Let us denote by p. the number of eigenvalues =1 of Eq.
(46). Then qzé(n— p.—p-) and the critical points are classi-
fied by the set (p,,p_,6,,...,6,). From Eq. (36) we con-
clude that the time-reversal symmetry is broken if and only if
0, # —,0 for some k=1,...,q. The angles 6, thus codify
the breaking of time reversal.

B. Parametrization

S can be any element of O(n), but in the physical appli-
cations one is mostly interested in boundary conditions
which preserve the electric charge Q,. In this case one infers
from Eq. (39) that

1
Sv=v, V=?(1,1,...,1), (47)
\n

i.e., S leaves invariant the vector v. Let R be the orthogonal
matrix [see Eq. (B2) in Appendix B], which rotates the vec-
tor (0,0,...,0,1) in v. Then S admits the representation

ool

O)R’ 48
0 1/ (48)
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with S’ € O(n—1). Therefore, the boundary conditions which
respect the U(1) symmetry of the TL model are parametrized
by the group O(n—1). The two connected components of
O(n—-1) give the origin of two continuous families of critical
points. Each family depends on (n—1)(n—2)/2 parameters,

1+2cos ¥
1-cos 9-— \6 sin

1
s(9) = 3
1—cos O+ \E sin O

1-2cos ¥
1 +cos 19—\6 sin O

1
S@(9) = =
(9)=73

1+cos 9— 3 sin &

1+cos O+ \E sin ¥

PHYSICAL REVIEW B 80, 245441 (2009)

which are the angular variables parametrizing the elements
of O(n-1).

Let us illustrate this simple general structure for n=3. The
two families of critical points depend in this case on one
angle ¥ € [-m, ) and read

1—-cos 9+ \E sind 1-cos - \E sin O
1+2cos ¥

1—-cos O— \E sin O

1-cos 9+3sin 9 |, (49)
1+2cos

=
1+ cos U+ V3 sin 9

1-2cos O , (50)

1 +cos U+ \Esinft} 1-2cos ¥ 1+ cos ﬂ—\,'gsinﬁ
|
confirming the recent results of Ref. 26. The point (P (t1,x1,17) P (t2,%2, 1))
- 1 2 2 =2;2,[ D(vt1 —x1)]7 [ D113 + x15) 17 %
S(=m) = 3 2 -1 2 (51) X[D(vty, _)712)]‘”‘5;,,'2[2)(0;12 +X12)] %k, (53)
2 2 -1 and

has been discovered by Griffith’> more than five decades ago
in his pioneering work on graph models in quantum chemis-
try. According to Eq. (41), in this case the conductance of the
Luttinger liquid is enhanced with respect to the line, which
has been associated® with the phenomenon of Andreev re-
flection. The Neumann point

st(0) = (52)

S O =
S = O
- o O

describes instead an ideal isolator because =0. To our
knowledge the whole family S®(®) was derived® first in
Ref. 19 and, together with points (51) and (52), preserves
time-reversal invariance. Finally, the matrices S((%) with
U +# —,0 give all critical points which violate time-reversal
symmetry for n=3. In a different parametrization®’ they ap-
peared in Refs. 10 and 22.

In Appendix B we report an explicit parametrization of

the n X n critical S matrices. The case when the l~](1) sym-
metry is preserved can be treated analogously.?’

VII. PHASE DIAGRAM: BOUNDARY DIMENSIONS AND
STABILITY OF CRITICAL POINTS

The boundary dimensions of the solution ¢, capture the
impact of the junction at criticality and can be extracted from
the two-point functions

(5 (t1,x1,0) ¥ (t2,%2,15)) = (53),  with o 7. (54)
Performing the scaling transformation

1> 0t, 0>0 (55)
in Egs. (53) and (54), one obtains

(oty,0x1,i1) (@12, 0x2,12))
= 0 P (11, x1,11) Yol12,%0,02)), (56)

X = 0x,

where

D=(+ ), +or(S+5). (57)
The eigenvalues d; of the matrix D/2 are the scaling dimen-
sions. If time reversal is broken (S# S’), some of the eigen-

values of S are necessarily complex. Notice however that the
eigenvalues of the combination S+5' are all real and

d,-=%(0'2+ )+ o7s;, (58)

with s being the n vector
*1).
(59)

s=(cos 6,,cos 6;,cos 6,,co8 b, ...,cos qu, +1,...

In Appendix C we prove that the mixing between ¢; and ¥,
produces vanishing additional eigenvalues and therefore
does not affect the spectrum (58) and (59).

Recalling that the scaling dimension on the line is

dm =10 + P, (60)

one deduces from Eq. (58) the boundary dimensions

38
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G-0

d;boundary) 5 ( 61 )

=07s; =
which control®®3? the stability of the critical points. The di-
rection i at a critical point S of the phase diagram is stable
(unstable) if d;>0 (d;<<0). We call point S completely stable
if all relative directions are stable. Using Egs. (27) and (28),
the boundary dimension d; can be rewritten in our case in the
form

1
dgboundary) — %(& -g)s;, v>0, (62)

where v >0 is given by Eq. (30). It is natural to consider at
this point the two regimes of repulsive (g,>g_) and attrac-
tive (g, <g_) anyonic interactions. From Eq. (62) one con-
cludes that in the repulsive case the direction i is stable if
s;>0. Vice versa, the attractive case stability requires s;<<0.

The direction i in the phase diagram is called flat if
d;=0. This happens for cos 6;,=0 and/or g,=g_. The last case
is very special: there is no interaction between i, and i, [see
Eq. (1)]; all boundary dimensions vanish and all directions
are flat.

It is worth stressing that the above considerations concern
the phase diagram of the system without symmetry con-
straints. According to Sec. IV, however, the Kirchhoff’s rules
controlling the symmetry content of the TL model on I" im-
pose such constraints. If one requires for instance U(1) sym-
metry, condition (39) implies that s;=1 in at least one direc-
tion. Therefore, for attractive interactions with U(1)
symmetry there are no completely stable points. The same

conclusion holds in the repulsive case with U(1) symmetry.

As already mentioned, imposing time-reversal symmetry
implies that 6;=—m or #,=0 for all i=1,...,g, which se-
verely restricts the phase diagram. In particular, the only
completely stable fixed points are S=1 (for g,>g_) and
S=-1 (for g, <g_), corresponding to Neumann and Dirichlet
boundary conditions, respectively. Allowing for breaking of
time reversal leads to a richer phase diagram, which admits
whole families of nontrivial (S # = 1) completely stable criti-
cal points.

Let us consider for illustration the phase diagram for
n=3 (Y junction). We have shown above that all critical
points, respecting the electric charge conservation, are given
by Egs. (49) and (50). The corresponding eigenvalues are

s =(cos 6,cos 6,1), sP=(1,1,-1), (63)

showing that the family S(6), which preserves time-
reversal symmetry, does not contain completely stable
points. The time-reversal breaking family S("(6) contains in-
stead the nontrivial completely stable fixed points with
cos >0 in the repulsive regime and cos #<<0 in the attrac-
tive one. In this sense complete stability is favored by time-
reversal breaking.

We stress in conclusion that the above algorithm can be
applied for analyzing the stability of the critical points under
perturbation with any composite operator involving the basic
fields i,(t,x,i). Some examples of quadratic operators are
considered in Appendix D.
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FIG. 2. A graph with three external and three internal edges.

VIII. CONCLUSIONS

We investigated above the behavior under time reversal of
a Luttinger junction with any number of edges n and satis-
fying the boundary conditions (11). As expected, time-
reversal invariance can be broken by boundary effects, in
spite of the fact that the bulk theory preserves this symmetry.
The following two exceptions are worth mentioning. Time-
reversal symmetry is always preserved for n=1. The same
conclusion holds for n=2, provided that the electric charge
Q, is conserved.

The results of this paper give a global view on the phase
diagram of the system with boundary conditions (11) and the
framework allows us to investigate both the symmetry con-
tent and the stability of the critical points. It turns out that the
phase diagram has two connected components, correspond-
ing to those of the group O(n) and therefore depending on
n(n—1)/2 parameters, which describe irrelevant boundary
couplings. In this classification the critical points, which re-
spect the electric charge conservation, form a O(n—1) sub-
family. A simple criterion (16) allows us to distinguish the
points which violate time-reversal invariance from those
which preserve it. The stability of the critical points is con-
trolled by the relative boundary dimensions. For generic n
we derived these dimensions in explicit form (62), establish-
ing their dependence on the boundary conditions and the
bulk couplings. The analysis of the critical points, which are
stable in all directions of the phase diagram, reveals that
except for the Neumann point S=] for repulsive interactions
and the Dirichlet point S=-I in the attractive case, all other
completely stable points violate time-reversal invariance.

As already mentioned in the Introduction, the simplest
realization of devices, violating time-reversal invariance,
uses® 101524 magnetic fields. An example, which frequently
appears in the literature,'%?? is the configuration shown in
Fig. 2. One has three external half lines and a ring composed
of three compact internal edges and three junctions. A mag-
netic flux ¢ is crossing the ring. The complete field theory
analysis of the Luttinger liquid on a graph with this geometry
is very complicated problem, which is beyond the scope of
the present paper. One approximate way to face the problem
could be to use the star product approach® or the “gluing”
technique*!'*? for deriving the 3 X 3 scattering matrix relative
to the external edges. Although a bit complicated,*%29 this
S matrix can be used afterward for developing a simplified
model with one effective junction. Clearly, such an approach
does not provide the conductance of the internal edges /;.
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The generalization of the results of this paper to off-
critical junctions represents also a challenging open problem.
The study of the rich spectrum? of effects away of equilib-
rium is essential in this respect. Another interesting subject is
the study of networks with several junctions. We are cur-
rently investigating these issues.
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APPENDIX A: CHIRAL FIELDS ON I
The chiral scalar fields,

@i, R(g) f

o0

0uu(8) = %4a(mwﬂa<mw@
o T\

[a (k)e*¢ + a;(k)e %],

(A1)

are the building blocks of the solution (20) and (21). On I’
the generators {a;(k),a;(k)} obey the following deformation:

Lai(k),a;(p)]=[a; (k),a;(p)]=0,
[ai(k),a;(p)] =27 &k~ p)

of the standard canonical commutation relations. Here, S(k)
is the one-body scattering matrix defined by Eq. (19). Be-
sides Eq. (A2), we impose also the constraints

O+ 5(k+17)5ij(k)], (A2)

a(k) =2 S;(k)a(-k), (A3)
J=1

a;(k) =2 a}(= k)S;(- k), (A4)
J=1

which are consistent, because S(k)S(—k)=1, and imply Eq.
(18). Equations (A2)—(A4) define a special reflection-
transmission algebra A, which has been introduced in a more
general form in the study**#6 of pointlike defects in inte-
grable systems. Notice that, although k dependent, S(k) is
scale invariant.

Time reversal is realized in the algebra A by means of

Ta (k)T =-al(-k), Ta;(k)T =-a;(-k). (AS)

In fact, Eq. (A5) implies
Top(t—x)T" =~ ¢; (=1 +x), (A6)
T (t+x)T" =~ @ p(=1-x), (A7)

which implement in turn the time-reversal transformation (9)
and (10) on the solution (20) and (21).
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For the construction of correlation functions we adopt the
Fock representation of A. We denote by () and (-,-) the Fock
vacuum state and the scalar product, using for the vacuum
expectation values of the operators O, the short notation

Since a;(k)Q2=0, the basic correlators are
(adp)a;(q))=2716,;8(p - q) + S;(p)8p + )],
(a"(p)a;(q)) =0, (A9)
which imply
<(Pl| R(fl)‘Plz r(&)) = <<Pl, L(&)‘P;z (&)= 111214(/1«512)
(A10)
<<Pi1,L(§1)<Pi2,R(§2)> = SiliQM(lung)’ (A11)
<<Pz] R(§1)<P12 (&)= %,],ZM(Mflz), (A12)
where §,=§—&,.
u(é) = ——ln(1§+ €), €>0, (A13)

and u>0 is an infrared mass parameter.*’ The normalization
constants z; which occur in Egs. (20) and (21) depend on w
in the following way:

7= (2,”_)—]/ZM[(02+72)+20'7‘S,~,-]/2 i (Al4)
where 7; are the anyon Klein factors needed to ensure the
correct anyon exchange relations on different edges of the
graph I'. A simple representation is
ﬂi(ai+a?):

7= (A15)

where {a;,;:i=1,...,n} generate the auxiliary algebra

[aiaaj]:[aisaj]209 [aisaj]:lgeijv (A16)
with €;=-1 for i</, €;=0, and €;=1 for i>j.

It is worth stressing that there is an action principle be-
hind the whole structure (A1)—(A13). The action can be writ-
ten in terms of the combinations
(A17)

@(t,x) = %[‘Pi,R(t —x)+ @ (t+x)],

oi(t,x) = %[‘Pi,R(t —-x) = @ (t+x)], (A18)

and the auxiliary fields {)\,»(t,x),)ti(t,x)} as follows. The bulk
and boundary actions action are

Sbulk - f dtf de D\ (axcpz + £7z(tDl) + )\ (‘91901 + axQD,)]

X (t,x), (A19)
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1l [ e .
Sboundary = EE dt()\i)\i - )\i)\i + o+ (Pi(Pi) (t7 0)
i=1 J -

lw (™ e
+ ZEI di[ (5 +5);;¢;,— @S + 50,
1,j= —%

-2¢i(5-159;¢,1(1,0), (A20)

respectively. The total action §=Syui+ Shoundary 1S NONdegen-

erate, with X and \ being the conjugate momenta of ¢ and @,
respectively. In agreement with Eq. (36), the only term
breaking time-reversal invariance is the term proportional to
S—5"in Eq. (A20). The bulk variation involves only Spyy.

Varying with respect to N\ and X, one gets the duality rela-
tions

‘9195(1,% l) == ax()D(t’x’ l) ’ (A21)

3 p(t,x,i) == d,0(t,x,1). (A22)

The bulk variation with respect to ¢ and @ gives analogous

relations between \ and N. The boundary variation involves
both Sy and Spoundary and, as easily verified, generates the
boundary condition (18).

A final comment concerns an interesting interplay be-
tween locality and time-reversal symmetry on I'. A standard
computation shows that at spacelike separated points
It <Xl

_ N~ 1
[(p(tbxlai)’ (p(t27x2’j)] == [(p(thxlal)’ <p(t27x2’.])] = Z(S[ - S)zjs

(A23)

implying that the time-reversal breaking on I' is accompa-
nied by the violation of locality of ¢ and &.*® One can easily
check however that this violation does not affect the locality
of the currents j., which belong to the observables of the
theory. More about quantum field theory on graphs (also
away from criticality) can be found in Refs. 18-20, 28, and
41-50, where some basic elements’!? of the spectral theory
of differential operators on graphs (“quantum graphs”) have
been used.

APPENDIX B: CRITICAL S MATRICES FOR GENERIC r

First of all, the matrix R which rotates the vector

(0,0,...,0,1) in v can be taken in the form
(o ifi<j=12,....n-1
-1
— ifi>j=1,....n-1
N(n=j)n—j+1)
R, =¥ —i
i o if i=j=1,....n—1
n—i+1
1 .
- if i=1,...,n, j=n,
\\7
(B1)

As well known, the matrix S’ € O(n—1) can be parametrized
in terms of the (n—1)(n—2)/2 rotation matrices

PHYSICAL REVIEW B 80, 245441 (2009)

{rij(9):i,j=1,....,n=1,i<j} each of them rotating at the
angle ¥;; in the ij plane. If det(S")=1 one has

1 1
S’ =( H Vi,n—1>( H ri,n—2) "‘(’”2,3”1,3)’"1,2~ (B2)
i=n-2 i=n-3

The only delicate point is the domain of the generalized Eu-

ler angles ¥;;, which turns out to be™’

[- 7 m) for j=i+1
qL(}ij € L (B3)
: [-@/2,m/2] for j>i+1.

Finally, in the case det(S’)=-1 one can simply multiply the
right-hand side of Eq. (B3) by the matrix r, which reflects,
for instance, along the first axis.

APPENDIX C: THE ;- ), MIXING

The mixing between ¢; and i, is described by the two-
point functions

(W (11,x1,0) ¥ (12,%3,1))

= ZilZiz[D(Utlz - xlz)]UT‘Si]iz[’D(vtn + xlz)]o—ﬂsiliz

X[D(vty, - 3712)]025"1"2[7)@%2 + 1712)]725"1"2, (C1)

(s(t1,x1,i) ¢y (12,32,i5)) = (C1),  with o 7. (C2)

Combining Egs. (C1) and (C2) with Egs. (53) and (54), one
finds that under a scaling transformation (55) a generic two-
point function transforms according to

(W, (011,0%1,11) (012, 0%2,12))
= 0 Peniiin(, (01,31,0) Y (12,X2,10)), (C3)
where D is the 2n X 2n matrix
D= (D b ) (c4)
B' D
with D given by Eq. (57) and
B=207l,+ 0*S'+ 7S. (C5)

The eigenvalues of the matrix D/4 provide the dimensions
capturing the ¢, — ¢, mixing. We will prove now that n of the
eigenvalues of 1D/4 vanish and that the remaining n coincide
precisely with the dimensions d; given by Eq. (58). For this
purpose we compute the characteristic polynomial
det(D-xl,,). First we move to the basis in which S has the
forms (45) and (46), performing the transformation

0 0\(D B\(0' 0 Dy By
= . (C6)
0 0/\B" D/\o 0') \By Dy

In this basis Dy is diagonal, whereas By is block diagonal.
At this point we use the identity>*

. (M N)_ »
et P 0 =det(M)det(Q — PM™'N), (C7)

where M, N, P, and Q are nXn blocks and M is invertible.
Let us apply Eq. (C7) to det(D-xl,,) with DD given by Eq.
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(C6). For D4—xl,, to be invertible we assume for the moment
that x # o”+ 7 +207s; with s; defined by Eq. (59). One gets

detUD - xﬂzn) = det(Dd - xﬂ,,)
Xdet[Dd - X]In + Bbd(Dd - X]In)_lBlljd] .
(C8)

Being determinants of diagonal and of block diagonal matri-
ces, the two factors in the right-hand side of Eq. (C8) are
easily computed. One finds

det(Dy—x1) =[] (x= - 2 =207s)), (C9)
i=1

det[Dd - x]In + Bbd(Dd - X]In)_lB}th]

F[ [x(x =207 =27 —4o7s;)]
=" . (C10)
[l(x-o?-7-207s;)
i=1

Notice that the factor (C9) cancels precisely the denominator
of Eq. (C10). Therefore, the characteristic polynomial we are
looking for is

det(D —x1,,) = [[ [x(x = 20% =27 - 4071s)], (C11)
i=1

which extends for any x by continuity and proves our state-
ment.

APPENDIX D: COMPOSITE TWO-FERMION
OPERATORS

We examine here the stability of the critical points under
the perturbation with the composite operators

Dy (1.2,0) = i1, 0) ~ el TG ok,
(D1)

B, (t5,0) = Yhis(tx) ~ e LD gusfers),
(D2)

The relative two-point correlation functions are easily de-
rived. One finds

PHYSICAL REVIEW B 80, 245441 (2009)

(D (t1,x1,i )P (12,X2,12))
=(D)(t1,x1,11) Do (12,X, 1))
2 2
~[D(vt, = x12) %[ D(vt 15 + x15) ]

- _2qt — _2s. .
X[D(vt), = F12) ][ D(vt )y + X1,) iz,
(D3)

(D (t1,x1,i) Po(t2,X9,12))
=(D3(t1,x1,i1) D (12,X, 1))
2 2
~[D(vt)y = x1) =20 Dty + x19) 0z

X[D(vt}, - 56‘12)]§35§1"2[1)(Ut12 + 5512)]&%"1’42- (D4)

As before, the response of Egs. (D3) and (D4) under the
scaling transformation (55) defines the 2n X 2n matrix

Jﬁ—gz(_l 1)@(%+Sf—21[) (D5)
N -1 ’

with the dimensions of the operators (D1) and (D2) being the

eigenvalues of D/2. One easily finds that n of these eigen-
values vanish. The remaining n are given by

C~Zl=§%(1 —Si), (D6)
where s; are defined by Eq. (59). Subtracting from Eq. (D6)
the dimensions of the same operators on the line, one finds
the nontrivial boundary dimensions

ggboundary) - _ é’zsi- (D7)

At this point one can repeat the analysis performed in Sec.
VII for perturbations with a single-fermion operator. Com-
paring Eqs. (62) and (D7) and using > >0, we see that in the
attractive regime g, <g_ the stability properties of the criti-
cal points under the two different perturbations are the same.
In the repulsive case g,>g_ the behavior is inverted. The
directions which were stable become unstable under pertur-
bations with Egs. (D1) and (D2) and vice versa.
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